UPC: Experiments with Joint Learning within SemEval Task 9
نویسندگان
چکیده
منابع مشابه
UPC-USMBA at SemEval-2017 Task 3: Combining multiple approaches for CQA for Arabic
This paper presents a description of the participation of the UPC-USMBA team in the SemEval 2017 Task 3, subtask D, Arabic. Our approach for facing the task is based on a performance of a set of atomic classifiers (lexical string-based, vectorial, and rulebased) whose results are later combined. Our primary submission has obtained good results: 2nd (from 3 participants) in MAP, and 1st in in ac...
متن کاملAnswer Sequence Learning with Neural Networks for Answer Selection in Community Question Answering
In this paper, the answer selection problem in community question answering (CQA) is regarded as an answer sequence labeling task, and a novel approach is proposed based on the recurrent architecture for this problem. Our approach applies convolution neural networks (CNNs) to learning the joint representation of questionanswer pair firstly, and then uses the joint representation as input of the...
متن کاملLIPN-IIMAS at SemEval-2016 Task 1: Random Forest Regression Experiments on Align-and-Differentiate and Word Embeddings penalizing strategies
This paper describes the SOPA-N system used by the LIPN-IIMAS team in Semeval 2016 Semantic Textual Similarity (Task 1). We based our work on the SOPA 2015 system. The SOPA-2015 system used 16 similarity features (including Wordnet, Information Retrieval and Syntactic Dependencies) within a Random Forest learning model. We expanded this system with an Align and Differentiate based strategy, wor...
متن کاملUWB at SemEval-2016 Task 5: Aspect Based Sentiment Analysis
This paper describes our system used in the Aspect Based Sentiment Analysis (ABSA) task of SemEval 2016. Our system uses Maximum Entropy classifier for the aspect category detection and for the sentiment polarity task. Conditional Random Fields (CRF) are used for opinion target extraction. We achieve state-of-the-art results in 9 experiments among the constrained systems and in 2 experiments am...
متن کاملUniPI at SemEval-2016 Task 4: Convolutional Neural Networks for Sentiment Classification
The paper describes our submission to the task on Sentiment Analysis on Twitter at SemEval 2016. The approach is based on a Deep Learning architecture using convolutional neural networks. The approach used only word embeddings as features. The submission used embeddings created from a corpus of news articles. We report on further experiments using embeddings built for a corpus of tweets as well...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007